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Onset of linear instability in homogeneous plasmas 
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Center for Theoretical Physics, Massachussets Institute of Technology, Cambridge, 
M A  02139, USA 

Received 14 January 1992 

Abstract. We consider the linear instability in homogeneous plasmas that occurs when the 
effective one-dimensional distribution of electrons is not a ‘single maximum’ function. We 
construct a quadratic farm [ .I. to explain why no linear instability occurs for sufficiently 
high wavenumbers k, even though the energy quadratic form is indefinite for all k. [ , l e  
is conserved in the linearized evolution, and positive-definite precisely up to the wave- 
number that the instability actually occurs. We argue against B ‘structural instability’ due 
to nonlinear terms. 

1. Introduction 

A basic problem in plasmas is the study of self-consistent small perturbations of the 
electron density and the electric field on a homogeneous equilibrium. Landau [ l ]  
demonstrated the collisionless damping of perturbations for stable equilibrium distribu- 
tion functions which are analytic in the complex velocity plane. The analysis has been 
extended to general equilibrium functions ([2,3] and more recently [4]). 

The perturbation may be decomposed into Fourier modes. The equilibrium as well 
as the perturbation distributions may be integrated in transverse velocities to give 
effective distribution functions g,(u), g ( u )  respectively, for the velocity component 
along the wavevector direction. In the case that g o ( u )  bas a single maximum in U 
s!abl!lty of the p!asma car? be demonr!ra!cd for a!! Fourier modes in terms of the 
positivity of the energy for all ‘allowed’ perturbations [ 5 , 2 ] .  These are perturbations 
that can be generated by the application of canonical transformations to the equilibrium 
configuration. (This set includes all perturbations that can be generated by external 
electric fields acting on the equilibrium configuration, in the direction of the 
wavevector.) 

If go(u)  has more than one maximum, then for every Fourier mode k there are 
allowed perturbarions that lower the energy of the configuration, or keep the energy 
unchanged so that the perturbation can grow arbitrarily large from the viewpoint of 
linear theory. At first one might think that there must be a corresponding linear 
instability, for all k, for such equilibrium configurations. But analysing the dispersion 
relation for the linear evolution reveals that no such instability occurs for wavenumbers 
k outside a range ( k o ,  k;), for some k, ,  kb depending on the equilibrium configuration. 
How do we understand this ‘anomalous stability”! ‘This probiem is important i i  we are 
to study recent conjectures that even for k outside the above range there is a ‘structural 
instability’ in the configuration which can be triggered by a small change in the evolution 
equation, e.g. by the inclusion of nonlinear terms [6 ] .  The situation has been compared 
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[6] to that for the Hamiltonian 

H = -fwl(p:+q:)+fo,(p:+q:). ( 1 . 1 )  

Solutions for H are purely oscillatory, but if w 2 / w 1  = 2 for example, then the addition 
of small nonlinear terms like a(Zq ,p ,p , -  q l ( q : - p : ) )  gives explosive solutions (which 
diverge in a finite time) that grow by transferring energy from the negative energy 
mode to the positive energy mode [7]. 

In this paper we ask the question: What characterizes the wavenumbers k,,, kb at  
which the linear instability sets in? These are not the points where the energy quadratic 
form (which we denote by [ ,IQ) becomes of indefinite sign, since as  mentioned above 
the energy form is indefinite for all k for these unstable equilibrium configurations. 
We construct another quadratic form [h ,  g l R  which has the following properties: ( a )  
[ . I R  is conserved in the (linearized) evolution; and ( b )  [ . I R  is positive-definite on 
the space of all perturbations with wavenumber k ou!side the range ( k G ,  kk), whl!e it. 
ceases to be positive-definite for k = ko,  kb. [ , I n  is the simplest of a family of quadratic 
forms sharing the properties ( a )  and ( b ) .  No quadratic form can be constructed which 
commutes with the evolution and is positive-definite for k = k, ,  kb; thus these invariants 
do characterize the onset of  linear instability. 

We follow with some remarks for the nonlinear case. Stellar dynamics is governed 
by the collisionless Boltzmann equation in the same manner as plasmas, though with 
the further complication that the equilibrium configuration is inhomogeneous, so that 
a Fourier transformation cannot separate modes. The 'anomalous stability' mentioned 
above has its counterpart for stellar dynamics, and a corresponding structural instability 
might be expected [8]. But numerical simulations of the one-dimensional gravitational 
N-body problem indicate instead a robust stability for such configurations [9]. This 
result might be explained [lo] by an application of the Kolmogorov-Arnold-Moser 
(KAM) theorem of classical mechanics [ll].  Similar considerations are expected to 
apply to plasmas, where the above mentioned family of quadratic forms can serve as 
the integrals for the unperturbed Hamiltonian in the KAM analysis. 

The plan of this paper is as follows. Section 2 details the basic equations for the 
linear evolution, the dispersion relation and the energy quadratic form. Section 3 
presents the quadratic form [ , I R  and establishes its properties. Section 4 discusses 
the nonlinear case. Section 5 concludes with some comments on the mathematical 
nature of the onset of the linear instability. 

2. Linearized evolution and the energy form 

Let Nf(x,  U, t j  be the density of eiectrons in the six-dimensionai position-veiociry 
space. The self-consistent oscillations of the electron density and the electric field are 
described by the collisionless Boltzmann equation 

e 
m J,+u.J, -E. -J.=O.  (2.1) 

where 

(x-x') 
E ( x , t ) = - e N  __ , ,f(x', U', t )  dx'do '  I J x - X I  
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For small perturbations on a homogeneous equilibrium configuration we write 
f ( x ,  U, t ) = f o ( u ) + f i ( x ,  U, t ) ,  to obtain 

fi may be Fourier transformed in position space: 

j , ( k , u ,  1 ) = ~ f , ( ~ , u , l ) e ~ " " d r  (2.4) 

Conservation of total charge implies that we may restrict to k if 0. Fix k, and let the 
x-axis be parallel to k. Define 

g(S 0) = J ?,(k, U, U,, u.) du, du,. (2.5) 

We will write g ( u )  for g ( S  U), as k remains unchanged in any given equation. Then 
(2.3) reduces to 

m 
W'p 

((ik)-'J,+u)g(u, f ) = F g o . J v )  j d u ' ,  1 )  do' (2.6) 
-m 

where op = ( 4 m 2 N / m ) ' "  is the plasma frequency and 

&(U) = M u ,  uv, 0.) do, do,. (2.7) 

If there exists a well-defined oscillation mode with frequency w :  

g(u, r ) = g ( u )  e-'"' (2.8) 
then we get 

Integrating (2.9) in U we get the dispersion relation for modes 

(2.10) 

As mentioned in section 1, one restricts to perturbations that can be produced by 
a canonical transformation on the equilibrium configuration. The energy (per unit 
transverse area) of such a perturbation is proportional, to lower order, to [g, glQ where 
[ , IQ is the quadratic form [5] 

f- h*(x', u')lx-x'l-lg(x, U )  dx  dv dx'do'. (2.11) 2 I 
Reducing to Fourier components we find that (2.11) vanishes for h, g having different 
wavenumbers, while for both having wavenumber k we get 

for the contribution to (2.11) per unit x length. 
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3. The quadratic form [ , I n  and its properties 

The first term in the energy quadratic form [g, gIQ (equation (2.12)) has the form 
a(u)lg(u)i2du where a ( u )  = -u/go. . (u) .  We distinguish two kinds of equilibrium 

configurations: 
( a )  go," = 0 for U = 0. This class includes the distributions go(u) = go( u 2 )  = go( E ) .  

Let go." = O  in addition for U = U,, i =  1 , .  . . , n?. Then n(u)  changes sign at the U,, 

( b )  go," # 0 for U = 0. Then in addition to the changes in sign at the U,, a(  U )  changes 

For equilibria of type ( a )  

nzrc ino thrnmoh infinitv st the rh.noe n(ol  An** nnt rhino- -inn .z+ I /  = 0. ~""".~.6 I... ""6.. ........., I. ...- -.."..61. - \ - ,  ---I ..-. _..I.. 6- I.6.. ". I 
sign at U =0 ,  but this change occurs by passing through the value zero, not infinity. 

lm(u)l> c> 0 (3.1) 
for some constant C, while such an inequality does not hold for equilibria of type ( b ) .  
We will investigate only the type ( a )  configurations, except for some brief remarks at 
the end of this section about type ( b ) .  

Let 

I iw'j 
Lg(x, U)=-iud,g(x, u)--go, , (u)  dx'du'&(x-x')g(x, U') (3.2) 

2 

where E = 1 for positive argument, -1 for negative argument. Thus on the space of 
Fourier component k functions 

(3.3) I 0: 
LdU) = kug(u)--go,o(~) du' g(u'). k 

We have from (2.6) 

i&g = Lg. (3.4) 
For equilibria of type ( a )  we define (for h, g, functions of x, U) 

[ h , g l ~ = [ h ,  I = ,  fi (L+iu,&)g]Q. (3.5) 

Reducing to Fourier components we find that (3.5) vanishes for h, g having different 
wavenumbers, while for both having wavenumber k we get 

(3.6) 

It is readily checked that 

[h,  Lgl, = Lhl?? (3.7) 

th.  gh=[g ,  hl*R (3.8) 

from which follows that 

so that [ , I R  is symmetric. From (3.4) follows that [ , IR is conserved in the evolution. 
Defining 

(3.9) 

t We assume for simplicity that these zeros are simple. All arguments for multiple zeros follow by taking 
the limit of coinciding simple zeros. 
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(3.10) 

[ g , , g 2 1 L z = ~  g?(v)g2(u)du (3.11) 

is the L2 inner product on the space of functions o f  U. Thus 

(3.12) 

We will assume that 

u"+'go,"(u) + 0 as JuJ+m (3.14) 

so that [ , I R  is bounded on all such perturbationst. The space of 'good' perturbations 
we denote by 9; it is contained in L'( U). 

Wefirst motivatetheform[, I R  bytakingasimpledistributiong,(u) andestahlishing 
that there exists a io such that for lkl> !&, [ , I n  is positive definite. Let go( u )  =io( U') = 

& ( E ) ,  and 

& ( E ) < O  E > E ,  

& ( E )  > 0 E < E, (3.15) 

where i&(E)=d&,(E)/dE. Thus g,,(u) decreases with IuI for i u l > u , = m ,  but 
: __.:.I_ 1..1 r..n ,I.. , .. ^ _ _ I  .... L ^ " ' .___^ :-^ A:-.-:!-...:-..- r _  IL^ I:...:. 1I1c:Lcascb W l l l l  IUI ,"I "\ IV,\ " I ,  till" wc ,,a"= d. 
Ik( + a, we get L + ku, and 

L W "  lllaxlllla "I>LIlV"Ll"l l .  111 Lllci  1111111 

(3.16) 

We note that 

go,,= - u ( u 2 - u 3 i d u )  (3.17) 

with &(U) bounded and positive in the support of &(U). Thus we find that at least 
the limit (3.16) is positive-definite. Further, 

L 2 g ( u ) =  k2u2n(u)-uw2pg0.U(u)  [ g ( u ' )  du'-wfg,,.,(u) r u'g(u')du'. (3.18) 
J J 

T J ( x ,  v )  is assumed to be a bounded square-integrable function afx, U with at least n continuous derivatives 
in x to permif defining [ ,  1.. I t  is passible 10 generate growing modes even on 'single maximum'distributions 
go(") with sufficiently singular penurbations [Z]; we will avoid investigating such possibilities here. 



where we have assumed the normalization 

go(u) du = 1. I 
(3.19) 

(3.20) 

We use the Schwarz inequality for the non-positive-definite terms in (3.19). From (3.17) 
and (3.20) follow that 

& ( u ) d u - D : c m  (3.21) 

u4&(u) du=D:<m. (3.22) 

I 
I 

Then 

(3.23) 

(3.24) 

So for k2>~$(u:D:+2DID2),  [ g , g J R  is positive. A similar argument holds for any 
distribution of type ( a ) ,  and it follows that [ , I R  is positive-definite on perturbations 
of sufficiently large wavenumber lkl. 

Our goal is to establish: 

Theorem 1. The quadratic form [ , I R  is positive-definite for sufficiently large absolute 
values of k. As k is moved in continuously (from plus or minus infinity) [ , I R  ceases 
to he positive-definite exactly a t  the point where (2.10) has a solution. 

The nature of solutions to (2.10) is readily analysed [2, 41. There are no solutions 
for sufficiently large Ikl. As k moves in from infinity, a solution with real w can appear, 
with the integral in (2.10) considered as a principal value integral. This solution does 
not correspond to a real frequency oscillation mode however, because the corresponding 
eigenfunction from (2.9) is singular. As k is moved further, two such real values of w 

can ‘collide’. At this point we get an oscillatory solution to (3.41, and a linearly growing 
solution. Further changing k causes this double point to split into a pair of complex 
conjugate eigenvalues, giving exponentially growing and exponentially decaying 
solutions to (3.4). Alternatively, there may be no ‘collision’ but a real solution point 
branches into three, one remaining real, while the other two leaving the real line to 
form a complex-conjugate pair. 

We have the simple observation: 

Lemma 2. If a pair of complex conjugate eigenvalues emerges from the real line at 
w = ki? then we must have go.,($ = 0. 
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Proof: For o = w R + i o , ,  w,+O+, (2.10) gives 

&?,"(U) 

( U  - o , / k - i o , / k )  

(3.25) 

where I, is a principal value integral. The imaginary part of this equation establishes 
the Lemma. U 

Thus the unstable mode can develop, for type ( a )  distributions, at o = O  or at 
o = ku,, i = 1 . . . n. To relate this property of the dispersion relation to [ , I n  we have 

Lemma 3. (a) The relation Lg = 0 is equivalent to Qg = 0, which implies [g, g ] ~  = 0. 
( b )  The relation ( L - k u , ) g = O  implies [ g , g ] ,  =O.  

Proof: ( a )  L g = O  implies g ( u )  =(Constant) go,,(u)/ti, which is a regular function for 
type ( a )  distributions, and clearly solves Qg = 0. The converse is immediate too. 

U 

Lemmas 2 and 3 establish that [ , I R  cannot be positive-definite at the value of k 
at which an eigenmode arises for the evolution, as given by the dispersion relation 
(2.10). We now argue the converse part of theorem 1 ,  i..e that [ , I R  remains positive- 
definite to the point that an unstable mode appears. As noted above, [ ,  I n  is positive- 
definite for sufficiently large jkl. As k moves in from say -m, let ko be the first point 
where [ , I R  is not positive-definite. We have 

Lemma 4. At k = k,, [ , I R  is positive semi-definite. There exist (for k = k,) a finite 
non-zero number of functions in the space 9 of allowed perturbations such that 
[ g m , g J n = O .  Further, Qn:_,(L-k,u,)g,-Tg,=Oforeach g,. 

Proof: First we prove the lemma for the case that g d v )  has compact support in u 
(g , (v )  = O  for IuI sufficiently large); next we indicate the modifications necessary for 
general g,(u). For the compact support case, T is a symmetric bounded operator on 
L 2 ( u ) .  From (3.6), [ h , g J R = [ h ,  TglL2. Further, T = M + N ,  where 

[g, glR = (-k)"(n:=,(u,))[g, 81, = O  from (3.10). 
( b )  This is obvious from the form of [ , I R .  

(3.26) 

is a symmetric positive-definite multiplicative operator and N has the form 

N.. v = N* ,' (3.27) 

with m < 2" and I ,  known L' functions of u t .  N is a symmetric bounded operator on 
L 2 ( u )  having finite rank (i.e. finite-dimensional range). Thus N is non-zero on the 

J m 

N g ( u ) =  1 N J ; ( u )  l?(u')g(u')  do'  
i . j = '  

t I , ( " )  can be taken IO vanish outside the support of go("], which by (3.13) is also the support of the g ( v ) .  
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finite-dimensional span W of the I,, and zero on the finite-dimensional span W of the 
I,, and zero on the orthogonal complement W' of W in the L2 norm. Thus if [ , I R  is 
not positive-definite in the space of perturbations then [ g ,  Tg] ,>  must be non-positive 
for some g in S and therefore in L 2 ( u ) .  The space W and the action of T on W can 
be seen to be continuous in k. Thus if k =  k ,  is the first point where [ . I R  is not 
positive-definite then we have that [g ,  g I R  3 0  and [g, , , ,  g m l R  = [ g m ,  Tg,] ,>=O for g ,  
in a subspace of the finite-dimensional space W. From these last two relations and the 
symmetry of T follows that T g ,  =O.  From the form of T we find that each solution 
g,,, actually lies in 9. 

If g o ( u )  does not have compact support in U the functions I , (u)  in (3.27) may not 
be in L 2 ( u ) .  Recalling (3.14) we define another inner product 

(3.28) 

where A(u) = ( u ~ " + ~ +  1 ) .  Thus for g in 9, the spaceof allowed perturbations, [ g ,  g l A  < 
Co. We can write [h,  g l n  = [ h ,  (A?+ k ) g l A  where M = ( A ( u ) ) - ' M  with M as in (3.26), 
and k g ( u ) = j  K,(u,  u ' ) A ( u ' ) g ( u ' )  du'. Here &(U, U') is the kernel 

m 

K N ( u ,  U') = (A(u))- l  T: N , , ~ ( u ) l ~ ( ~ ' ) ( A ( u ' ) ) - ' .  (3.29) 

It can be checked that the functions I j ( u ) ( A ( u ) ) - l  have finite A-norm, so that K ,  
describes a finite rank operator in the Hilbert space of functions with the inner product 

0 

Thus at k = k , ,  T g = Q I I y = , ( L - k u i )  g = O  for at least one g in the space of 
perturbations. Either IIy=, ( L  - k u j ) g  = g ,  = 0 or g ,  solves Qg,  = 0. By lemma 3, part 
( a ) ,  the latter possibility implies that L g ,  = 0, which implies L g  = 0. If g ,  = 0, then 
( L -  k q ) g  = 0 for some U,, and we again have that g is an eigenfunction of L. We have 
therefore established the other half of theorem 1 ,  i.e. that [ , I n  is positive-definite until 
k = ko when a solution appears for the dispersion relation (2.10). A similar argument 
holds when k is decreased from Co to k b .  0 

Our result may be interpreted as saying that for k outside the range ( k o ,  k ; )  the 
evolution operator L is a self-adjoint operator on a positive-definite Hilbert space of 
perturbations, but [ , l o  does not provide the positive-definite inner product. I f  D ( x )  
is any positive function of its argument, bounded below, then [h ,  D ( L )  IIL, ( L -  
ku i )g lQ  is also a conserved positive-definite form. [ . I R  is the simplest of the family 
of quadratic forms having these properties. 

If w is a complex eigenvalue of L then [ g ,  L g l 0  = w [ g ,  g l o .  But by ( 3 . 7 )  the LHS 
is real, so that [ g ,  g l o  (which is also real) must vanish. The limit of this result for w 

at the real axis yields that any conserved quadratic form [ g ,  B(L),Ip, ( B  an arbitrary 
bounded function) must he null for some g at the onset of instability, and so cannot 
be positive-definite. Alternatively, one notes that there is a two-dimensional subspace 
of functions associated to the pair of complex conjugate eigenvalues w,  w * .  But there 
is only one eigenfunction when w is taken to the real line, because (.2.9) has a unique 
solution for any W .  The other vector at this point grows linearly in time 1, so that no 
positive-definite quadratic form can be conserved. Thus we see that it  is not possible 
to construct conserved quadratic forms that remain positive-definite at k = k , ,  kb where 
[ , I R  fails to be so. 

i i _ l  
..I . 

[ , I A ,  which contains 9. The rest of the argument proceeds as before. 
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For equilibria of type ( b ) ,  we do  not have the inequality (3.1), and the limit (3.16) 
does not dominate the full expression for T for large Ikl. For such systems it is possible 
to construct perturbations g peaked at U = 0 with arbitrarily large Lz norm but a finite 
value of the analogue of [g ,g ] , .  This suggests that these type ( b )  configurations are 
inherently more unstable than those of tyep ( a ) .  

It is possible to construct equilibrium configurations g o ( u )  such that the interval 
( k o ,  kb) contains subintervals (kj, k : )  where no solutions to (2.10) exist, so that there 
are no unstable modes. It would be interesting to examine what quadratic forms are 
positive-definite in these subintervals of k 

4. Structural instability? 

Let us consider again the Hamiltonian (1.1). Besides the value of H there is a second 
invariant for this system: 

G = f u , ( d +  d)+Md+ 9:). (4.1) 

G is positive, and is the analogue of the quadratic form [ , I n  in our problem. What 
happens when we switch on a nonlinear perturbation linking the two oscillators in 
( l . l ) ?  One might think that the value of the new Hamiltonian is the only conserved 
quantity now, and G is a meaningless quantity. But the KAM theorem tells us that if 
the ratio of frequencies w 2 / w ,  is sufficiently irrational, then G is deformed to another 
integral of motion, and the motion still takes place on a two-dimensional torus in the 
four-dimensional phase space. (The size of the neighbourhoods around the rational 
numbers that must be avoided go to zero with the strength of the perturbation.) 

Is it possible that [, I n  and other members of the family of conserved forms deform 
to new integrals when nonlinear terms are considered in the evolution equation? The 
fact that we have an infinite number of degrees of freedom in our system may suggest 
that this would be difficult; any argument for integrability would have to control 
resonances from an infinite number of sources. But a closer look at the problem reveals 
that we do not have a countable infinity of orthogonal degrees of freedom as the 
independent ones for the linear problem, which would indeed be a complicated case. 
We have a continuous family of singular Van Kampen modes [12], and the weight of 
any one mode in expressing a smooth function is zero. Thus only a range of modes 
carries any weight, and in any range a variety of frequencies are smeared. This could 
lead to a softening of the resonance structure. 

That such is indeed the case is suggested by a recent simulation [9] of the one- 
dimensional collisionless gravitating system, which is described by an evolution 
analogous to (2.1), (2.2). It is known that when the equilibrium configuration & ( E )  is 
a monotonically decreasing function of the energy E then the system is stable due to 
positivity of the energy quadratic form analogous to (2.11) [13]. Iffu is not monotonic, 
pertrubations can be constructed to decrease or keep unchanged the total energy of 
the system, though the linear theory does not always develop an unstable mode. The 
simulation in [9] starts with the system far out of equilibrium, and stablizes to an 
oscillating solution with distribution function not monotonically decreasing with 
energy, but having instead elongated 'holes' in phase space. 

To explain the above in terms of the K A M  theorem one observes [ lo]  that only a 
small measure of orbits resonate with the oscillation; the others distort but remain 
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closed. Because closed curves in this two-dimensional phase space partition the phase 
space, there is no large drift of points under the oscillation potential. 

Similarily, suppose in the plasma case we excite an oscillation periodic in space 
with period A = 2 r r / k  with k outside the range ( k o ,  kh). In considering nonlinear terms 
we have to consider harmonics nk, in integer, all of which lie outside the range ( k " ,  k; ) .  
(The zero mode can presumably be absorbed by redefining the equilibrium configura- 
tion.) For a given strength of oscillation, a finite measure of U values would be trapped 

partition phase space, preventing large wanderings of particle orbits. Consequently we 
do not expect a 'structural instability' due to inclusion of nonlinear terms, in the 
wavelength domain where no linear instability occurs. (When a growing linear mode 
arises, the solutions of the linear problem are not 'confined' in a finite region of solution 
space, as shown by the absence of positive-definite invariants like [ , I R  defined on the 
space of functions. A KAM approach is then not applicable.) 

ir. lesonlnce region., whi!e other L' = const2r.t orbits. -wou!d defcrm bst  comicue !O 

5. Discussion 

We have analysed the question: How do we understand the 'anomalous stability' to 
short wavelength perturbations in equlibria where g,(o) is not a 'single maximum' 
distribution? If we ignore the last term in the linearized evolution equation (2.3) then 
we indeed have an infinite number of manifestly uncoupled degrees of freedom, just 
like for the two degrees of freedom Hamiltonian (1.1). Is it a specific peculiarity of 
the form of the integral in (2.3) in that it fails to couple positive energy modes to 
negative energy modes for sufficiently high wavenumber? As a corollary of our analysis 
we see that this is not the case. The exact form of the integral term in is not important; 
any integral term with a sufficiently regular kernel would ensure that this part decreased 
with Ikl, and was a compact operator [14] (which is a generalization of the finite rank 
operator that we had in our case). Similarily, the exact form of the first term in L is 
not important; all that we used was that (3.1) hold so that this part can contribute 
dominantly in the form [ , I R  for all perturbations of large wavenumber. 

It is interesting to see our construction from a mathematical perspective. For gli(v) 
a LC:""lD ...""Z -..I 9 F.."^tiA" r 1 A..-* " ..Aci,i.lp ,4-G":tn "A..se..,a.4 in"-. 

on the space of allowed perturbations. If we continue to use [ , IQ as the inner product 
for all distributions of type ( a )  (cf section 3) then we get an indefinite inner product 
space in general. An indefinite space V is called decomposable if we can write 
V =  V+O V,O V_, with each of these three subspaces orthogonal to the others, and 
the norm squared of a vector being positive, zero or negative if it belongs to V,, V,, 
or V_ respectively. If V, is empty (and the other two parts are complete spaces) then 
we have a Krein space. Let the distribution function go( U )  have compact support in 
U ;  then the operator L is bounded and we can use the simpler theory of  bounded 
operators in indenfinite metric spaces. On a Krein space we say a bounded operator 
L is positizable if there exists a real (non-constant) polynomial P such that P ( L )  is a 
positive-semidefinite operator ( [g ,  P (  L ) g l Q  2 0) [IS]. 

In this language, for large wavenumber, we have that the space of allowed perturba- 
tions with the norm [ , l o  is a Krein space, and the positive form [ , I R  shows that the 
evolution operator L is positizable. A point o in the spectrum of a positizable operator 
is called a critical point if the spectral projection onto every neighbourhood containing 
o gives an indefinite subspace. Only at critical points can we have Jordan chains of 
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vectors (as opposed to eigenvectors), and the maximum length of the Jordan chain is 
two. The spectral theorem for (bounded) positizable operators says that critical points 
must be contained in the zeros of the positizing polynomial P. These critical points 
correspond, in our problem, to the frequencies ku, where the instability can arise. If 
the complex eigenvalues emerge at these frequencies w = kuj, then the onset of instability 
is characterized by P(L) becoming positive-semidefinite instead of positive-delinitet. 
(The Jordan chain of length two corresponds to the oscillatory mode and the linearly 
growing mode at the onset of instability.) If the instability arises with w = O  then at 
the corresponding value of k the vector space of perturbations with the inner product 
[ , IQ has ceased to be Krein, because the corresponding eigenfunction belongs to the 
V, component of the vector space (cf lemma 3, section 3) .  

Our approach should extend to plasma perturbations with magnetic field excitations, 
and to the stellar dynamics case. The computation of higher order perturbation theory 
corrections to the integral [ , I R ,  and their relation to the KAM analysis, are under 
investigation. 
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Wesley) 

- 
t The spectral theorem for bounded positizable operators also tells us that there can be only a finite number 
of complex eigenvalues. and that the Jordan chains far these must have length one. Thus when k is such 
that the space of perturbations is Krein we can obtain a stranger result than [2], where such eigenvalues 
were assumed denumerable. each with a lardan chain of some length n,. implying modes of Ihe kind 
l 3  e-'*,', m =0, I , , , n,- I. 


